- Dernière mise à jour
- 16 juillet 2024
- Organisation
- EnviDat: le portail de données environnementales
- Catégories
- Éducation, culture et sport
Description
This dataset contains Community Land Model 5 (CLM5) simulation output over the spatial extent of Switzerland at different resolutions and based on a range of input datasets. It further contains land-use surface data used for the CLM5-simulations.
Detailed description of the CLM5 simulation setup and the various input datasets can be found in the accompanying publication: https://doi.org/10.5194/egusphere-2023-1832.
CLM5 simulation output
This dataset includes gridded CLM5 simulations of snow depth, gross primary productivity (GPP) and evapotranspiration at different resolutions ( 1km, 0.25° and 0.5°) and based on a range of input datasets over the spatial extent of Switzerland (see folder gridded_CLM5_simulations). Additionally, point-scale CLM5 simulations of snow depth and snow-water-equivalent at 36 snow-station locations (see folder point_scale_CLM5_simulations) are included. Latitude, longitude and elevation for these station locations can be found in table A1 of the above-mentioned publication. All simulation output spans from 01/01/2015 - 31/12/2019.
Included CLM5 simulation results are based on 3 different meteorological forcing datasets:
Clim_CRU: standard global dataset, we used the recent state-of-the-art standrd global dataset CRU-JRA (https://catalogue.ceda.ac.uk/uuid/aed8e269513f446fb1b5d2512bb387ad)
Clim_CRU*: ClimCRU upraded by downscaling temperature data using a temperature lapse rate of -6.5K/1000m and a high-resolution DEM
Clim_OSHD: highest level of detail, meteorological forcing generated according to methods developed by the Operational Snow Hydrological Service (OSHD), at 1km spatial and 1hour temporal resolution
Land-use surface data
This dataset further includes forcing land surface datasets used for the CLM5 simulations at 1km, 0.25° and 0.5° resolution (see folder surface_landuse_datasets). For the 1km resolution both the standard global (LU_Gl) and the high-resolution dataset (LU_HR), which includes a higher level of detail and is based on a more up-to-date land use datase, are provided. More details on these two datasets can be found in the above-mentioned publication.
Ressources
Showcases
Informations complémentaires
- Identifier
- 5c9bd5b4-baf0-4aa3-83c0-0864f9275f4e@envidat
- Date de publication
- 3 juillet 2024
- Date de modification
- 16 juillet 2024
- Conforme à
- -
- Editeur
- EnviDat
- Points de contact
- Langues
- Anglais
- Informations complémentaires
- -
- Landing page
- https://www.envidat.ch/#/metadata/clm5-snow-gpp-evapo-switzerland
- Documentation
- -
- Couverture temporelle
- -
- Couverture spatiale
- -
- Intervalle d'actualisation
- -
- Accès aux métadonnées
- API (JSON) Télécharger XML